Researchers led by University of Texas revealed that they have managed to crack the RNA control code through which RNA, which mediates DNA expression, makes use of genetic information from the DNA to create proteins.
"For the first time, we understand the language of a code that is essential to gene processing," said Quaid Morris, a Professor in U of T's Donnelly Centre for Cellular and Biomolecular Research and the Banting and Best Department of Medical Research. "Many human diseases are due to defects in this code, so figuring out what it means is crucial to creating new treatments for many conditions."
The scientific journal Nature published the study results in its July 11, 2013 issue.
The researchers translated the code with a biochemical technique developed by a research scientist in Hughes' lab, Debashish Ray, and a student in Morris's lab, Hilal Kazan. The team defined the meaning of "words" in RNA, allowing identification of patterns in RNA molecules that proteins use to control RNA processing and movement, which are often altered in disease.
One protein they looked at may explain some of the symptoms in children with autism. The researchers found that RBFOX1, a protein often turned off in the brains of patients, ensures the activity of genes important for the function of nerve cells in the brain.
"This was a surprising finding, because we knew RBFOX1 controls gene expression, but had no idea it also stabilizes RNA," said Tim Hughes, a Professor in the Department of Molecular Genetics and the Donnelly Centre. "It's a good example of the predictive power of the RNA control code, which we think will really open up the field of gene regulation."
Hughes said the work also shows that the RNA control code may be easier to interpret than a similar control code in DNA. Researchers have been struggling for years to understand this DNA control code, but the new results suggest RNA control could offer a more fruitful area of inquiry, with autism as just one example.
The team is now working with autism experts to assess the potential of RBFOX1 in autism therapies, and exploring promising leads on the roles of unstudied proteins in many other diseases.
Source:NATURE
"For the first time, we understand the language of a code that is essential to gene processing," said Quaid Morris, a Professor in U of T's Donnelly Centre for Cellular and Biomolecular Research and the Banting and Best Department of Medical Research. "Many human diseases are due to defects in this code, so figuring out what it means is crucial to creating new treatments for many conditions."
The scientific journal Nature published the study results in its July 11, 2013 issue.
The researchers translated the code with a biochemical technique developed by a research scientist in Hughes' lab, Debashish Ray, and a student in Morris's lab, Hilal Kazan. The team defined the meaning of "words" in RNA, allowing identification of patterns in RNA molecules that proteins use to control RNA processing and movement, which are often altered in disease.
One protein they looked at may explain some of the symptoms in children with autism. The researchers found that RBFOX1, a protein often turned off in the brains of patients, ensures the activity of genes important for the function of nerve cells in the brain.
"This was a surprising finding, because we knew RBFOX1 controls gene expression, but had no idea it also stabilizes RNA," said Tim Hughes, a Professor in the Department of Molecular Genetics and the Donnelly Centre. "It's a good example of the predictive power of the RNA control code, which we think will really open up the field of gene regulation."
Hughes said the work also shows that the RNA control code may be easier to interpret than a similar control code in DNA. Researchers have been struggling for years to understand this DNA control code, but the new results suggest RNA control could offer a more fruitful area of inquiry, with autism as just one example.
The team is now working with autism experts to assess the potential of RBFOX1 in autism therapies, and exploring promising leads on the roles of unstudied proteins in many other diseases.
Source:NATURE
No comments:
Post a Comment