
The new discovery shows that mice do indeed have oxytocin receptors at a key location in the nucleus accumbens and, importantly, that blocking oxytocin's activity there significantly diminishes these animals' appetite for socializing. Dölen, Malenka and their Stanford colleagues also identified, for the first time, the nerve tract that secretes oxytocin in the region, and they pinpointed the effects of oxytocin release on other nerve tracts projecting to this area.
Mice can squeak, but they can't talk, Malenka noted. "You can't ask a mouse, 'Hey, did hanging out with your buddies a while ago make you happier?'" So, to explore the social-interaction effects of oxytocin activity in the nucleus accumbens, the investigators used a standard measure called the conditioned place preference test.
"It's very simple," Malenka said. "You like to hang out in places where you had fun, and avoid places where you didn't. We give the mice a 'house' made of two rooms separated by a door they can walk through at any time. But first, we let them spend 24 hours in one room with their littermates, followed by 24 hours in the other room all by themselves. On the third day we put the two rooms together to make the house, give them complete freedom to go back and forth through the door and log the amount of time they spend in each room."
Mice normally prefer to spend time in the room that reminds them of the good times they enjoyed in the company of their buddies. But that preference vanished when oxytocin activity in their nucleus accumbens was blocked. Interestingly, only social activity appeared to be affected. There was no difference, for example, in the mice's general propensity to move around. And when the researchers trained the mice to prefer one room over the other by giving them cocaine (which mice love) only when they went into one room, blocking oxytocin activity didn't stop the mice from picking the cocaine den.
In an extensive series of sophisticated, highly technical experiments, Dölen, Malenka and their teammates located the oxytocin receptors in the murine nucleus accumbens. These receptors lie not on nucleus accumbens nerve cells that carry signals forward to numerous other reward-system nodes but, instead, at the tips of nerve cells forming a tract from a brain region called the dorsal Raphe, which projects to the nucleus accumbens. The dorsal Raphe secretes another important substance, serotonin, triggering changes in nucleus accumbens activity. In fact, popular antidepressants such as Prozac, Paxil and Zoloft belong to a class of drugs called serotonin-reuptake inhibitors that increase available amounts of serotonin in brain regions, including the nucleus accumbens.
As the Stanford team found, oxytocin acting at the nucleus accumbens wasn't simply squirted into general circulation, as hormones typically are, but was secreted at this spot by another nerve tract originating in the hypothalamus, a multifunction midbrain structure. Oxytocin released by this tract binds to receptors on the dorsal Raphe projections to the nucleus accumbens, in turn liberating serotonin in this key node of the brain's reward circuitry. The serotonin causes changes in the activity of yet other nerve tracts terminating at the nucleus accumbens, ultimately resulting in altered nucleus accumbens activity - and a happy feeling.
"There are at least 14 different subtypes of serotonin receptor," said Dölen. "We've identified one in particular as being important for social reward. Drugs that selectively act on this receptor aren't clinically available yet, but our study may encourage researchers to start looking at drugs that target it for the treatment of diseases such as autism, where social interactions are impaired."
Malenka and Dölen said they think their findings in mice are highly likely to generalize to humans because the brain's reward circuitry has been so carefully conserved over the course of hundreds of millions of years of evolution. This extensive cross-species similarity probably stems from pleasure's absolutely essential role in reinforcing behavior likely to boost an individual's chance of survival and procreation.
Source:Stanford University School of Medicine
No comments:
Post a Comment